class Plant {
enum LifeCycle { ANNUAL, PERENNIAL, BIENNIAL }
final String name;
final LifeCycle lifeCycle;
Plant(String name, LifeCycle lifeCycle) {
this.name = name;
this.lifeCycle = lifeCycle;
}
@Override public String toString() {
return name;
}
}
You want to list these plants organized by life cycle (annual, perennial, or biennial).
enum LifeCycle { ANNUAL, PERENNIAL, BIENNIAL }
final String name;
final LifeCycle lifeCycle;
Plant(String name, LifeCycle lifeCycle) {
this.name = name;
this.lifeCycle = lifeCycle;
}
@Override public String toString() {
return name;
}
}
You want to list these plants organized by life cycle (annual, perennial, or biennial).
// Using ordinal() to index into an array - DON'T DO THIS!
Set<Plant>[] plantsByLifeCycle =
(Set<Plant>[]) new Set[Plant.LifeCycle.values().length];
for (int i = 0; i < plantsByLifeCycle.length; i++)
plantsByLifeCycle[i] = new HashSet<>();
for (Plant p : garden)
plantsByLifeCycle[p.lifeCycle.ordinal()].add(p);
// Print the results
for (int i = 0; i < plantsByLifeCycle.length; i++) {
System.out.printf("%s: %s%n",
Plant.LifeCycle.values()[i], plantsByLifeCycle[i]);
}
Set<Plant>[] plantsByLifeCycle =
(Set<Plant>[]) new Set[Plant.LifeCycle.values().length];
for (int i = 0; i < plantsByLifeCycle.length; i++)
plantsByLifeCycle[i] = new HashSet<>();
for (Plant p : garden)
plantsByLifeCycle[p.lifeCycle.ordinal()].add(p);
// Print the results
for (int i = 0; i < plantsByLifeCycle.length; i++) {
System.out.printf("%s: %s%n",
Plant.LifeCycle.values()[i], plantsByLifeCycle[i]);
}
This technique works, but it is fraught with problems. Because arrays are not compatible with generics (Item 28), the program requires an unchecked cast and will not compile cleanly. Because the array does not know what its index represents, you have to label the output manually. But the most serious problem with this technique is that when you access an array that is indexed by an enum’s ordinal, it is your responsibility to use the correct
int
value; int
s do not provide the type safety of enums. If you use the wrong value, the program will silently do the wrong thing or—if you’re lucky—throw an ArrayIndexOutOfBoundsException
.
// Using an EnumMap to associate data with an enum
Map<Plant.LifeCycle, Set<Plant>> plantsByLifeCycle =
new EnumMap<>(Plant.LifeCycle.class);
for (Plant.LifeCycle lc : Plant.LifeCycle.values())
plantsByLifeCycle.put(lc, new HashSet<>());
for (Plant p : garden)
plantsByLifeCycle.get(p.lifeCycle).add(p);
System.out.println(plantsByLifeCycle);
Map<Plant.LifeCycle, Set<Plant>> plantsByLifeCycle =
new EnumMap<>(Plant.LifeCycle.class);
for (Plant.LifeCycle lc : Plant.LifeCycle.values())
plantsByLifeCycle.put(lc, new HashSet<>());
for (Plant p : garden)
plantsByLifeCycle.get(p.lifeCycle).add(p);
System.out.println(plantsByLifeCycle);
This program is shorter, clearer, safer, and comparable in speed to the original version. There is no unsafe cast; no need to label the output manually because the map keys are enums that know how to translate themselves to printable strings; and no possibility for error in computing array indices. The reason that
EnumMap
is comparable in speed to an ordinal-indexed array is that EnumMap
uses such an array internally, but it hides this implementation detail from the programmer, combining the richness and type safety of a Map
with the speed of an array. Note that the EnumMap
constructor takes the Class
object of the key type: this is a bounded type token, which provides runtime generic type information (Item 33).
The previous program can be further shortened by using a stream (Item 45)
// Naive stream-based approach - unlikely to produce an EnumMap!
System.out.println(Arrays.stream(garden)
.collect(groupingBy(p -> p.lifeCycle)));
System.out.println(Arrays.stream(garden)
.collect(groupingBy(p -> p.lifeCycle)));
// Using a stream and an EnumMap to associate data with an enum
System.out.println(Arrays.stream(garden)
.collect(groupingBy(p -> p.lifeCycle,
() -> new EnumMap<>(LifeCycle.class), toSet())));
System.out.println(Arrays.stream(garden)
.collect(groupingBy(p -> p.lifeCycle,
() -> new EnumMap<>(LifeCycle.class), toSet())));
// Using ordinal() to index array of arrays - DON'T DO THIS!
public enum Phase {
SOLID, LIQUID, GAS;
public enum Transition {
MELT, FREEZE, BOIL, CONDENSE, SUBLIME, DEPOSIT;
// Rows indexed by from-ordinal, cols by to-ordinal
private static final Transition[][] TRANSITIONS = {
{ null, MELT, SUBLIME },
{ FREEZE, null, BOIL },
{ DEPOSIT, CONDENSE, null }
};
// Returns the phase transition from one phase to another
public static Transition from(Phase from, Phase to) {
return TRANSITIONS[from.ordinal()][to.ordinal()];
}
}
}
public enum Phase {
SOLID, LIQUID, GAS;
public enum Transition {
MELT, FREEZE, BOIL, CONDENSE, SUBLIME, DEPOSIT;
// Rows indexed by from-ordinal, cols by to-ordinal
private static final Transition[][] TRANSITIONS = {
{ null, MELT, SUBLIME },
{ FREEZE, null, BOIL },
{ DEPOSIT, CONDENSE, null }
};
// Returns the phase transition from one phase to another
public static Transition from(Phase from, Phase to) {
return TRANSITIONS[from.ordinal()][to.ordinal()];
}
}
}
// Using a nested EnumMap to associate data with enum pairs
public enum Phase {
SOLID, LIQUID, GAS;
public enum Transition {
MELT(SOLID, LIQUID), FREEZE(LIQUID, SOLID),
BOIL(LIQUID, GAS), CONDENSE(GAS, LIQUID),
SUBLIME(SOLID, GAS), DEPOSIT(GAS, SOLID);
private final Phase from;
private final Phase to;
Transition(Phase from, Phase to) {
this.from = from;
this.to = to;
}
// Initialize the phase transition map
private static final Map<Phase, Map<Phase, Transition>>
m = Stream.of(values()).collect(groupingBy(t -> t.from,
() -> new EnumMap<>(Phase.class),
toMap(t -> t.to, t -> t,
(x, y) -> y, () -> new EnumMap<>(Phase.class))));
public static Transition from(Phase from, Phase to) {
return m.get(from).get(to);
}
}
}
public enum Phase {
SOLID, LIQUID, GAS;
public enum Transition {
MELT(SOLID, LIQUID), FREEZE(LIQUID, SOLID),
BOIL(LIQUID, GAS), CONDENSE(GAS, LIQUID),
SUBLIME(SOLID, GAS), DEPOSIT(GAS, SOLID);
private final Phase from;
private final Phase to;
Transition(Phase from, Phase to) {
this.from = from;
this.to = to;
}
// Initialize the phase transition map
private static final Map<Phase, Map<Phase, Transition>>
m = Stream.of(values()).collect(groupingBy(t -> t.from,
() -> new EnumMap<>(Phase.class),
toMap(t -> t.to, t -> t,
(x, y) -> y, () -> new EnumMap<>(Phase.class))));
public static Transition from(Phase from, Phase to) {
return m.get(from).get(to);
}
}
}
// Adding a new phase using the nested EnumMap implementation
public enum Phase {
SOLID, LIQUID, GAS, PLASMA;
public enum Transition {
MELT(SOLID, LIQUID), FREEZE(LIQUID, SOLID),
BOIL(LIQUID, GAS), CONDENSE(GAS, LIQUID),
SUBLIME(SOLID, GAS), DEPOSIT(GAS, SOLID),
IONIZE(GAS, PLASMA), DEIONIZE(PLASMA, GAS);
... // Remainder unchanged
}
}
public enum Phase {
SOLID, LIQUID, GAS, PLASMA;
public enum Transition {
MELT(SOLID, LIQUID), FREEZE(LIQUID, SOLID),
BOIL(LIQUID, GAS), CONDENSE(GAS, LIQUID),
SUBLIME(SOLID, GAS), DEPOSIT(GAS, SOLID),
IONIZE(GAS, PLASMA), DEIONIZE(PLASMA, GAS);
... // Remainder unchanged
}
}
The program takes care of everything else and leaves you virtually no opportunity for error. Internally, the map of maps is implemented with an array of arrays, so you pay little in space or time cost for the added clarity, safety, and ease of maintenance.
In the interest of brevity, the above examples use
null
to indicate the absence of a state change (wherein to
and from
are identical). This is not good practice and is likely to result in a NullPointerException
at runtime. Designing a clean, elegant solution to this problem is surprisingly tricky, and the resulting programs are sufficiently long that they would detract from the primary material in this item.
In summary, it is rarely appropriate to use ordinals to index into arrays: use
EnumMap
instead. If the relationship you are representing is multidimensional, use EnumMap<..., EnumMap<...>>
. This is a special case of the general principle that application programmers should rarely, if ever, use Enum.ordinal
(Item 35).
No comments:
Post a Comment